Spatiotemporal alignment of in utero BOLD-MRI series.
نویسندگان
چکیده
PURPOSE To present a method for spatiotemporal alignment of in-utero magnetic resonance imaging (MRI) time series acquired during maternal hyperoxia for enabling improved quantitative tracking of blood oxygen level-dependent (BOLD) signal changes that characterize oxygen transport through the placenta to fetal organs. MATERIALS AND METHODS The proposed pipeline for spatiotemporal alignment of images acquired with a single-shot gradient echo echo-planar imaging includes 1) signal nonuniformity correction, 2) intravolume motion correction based on nonrigid registration, 3) correction of motion and nonrigid deformations across volumes, and 4) detection of the outlier volumes to be discarded from subsequent analysis. BOLD MRI time series collected from 10 pregnant women during 3T scans were analyzed using this pipeline. To assess pipeline performance, signal fluctuations between consecutive timepoints were examined. In addition, volume overlap and distance between manual region of interest (ROI) delineations in a subset of frames and the delineations obtained through propagation of the ROIs from the reference frame were used to quantify alignment accuracy. A previously demonstrated rigid registration approach was used for comparison. RESULTS The proposed pipeline improved anatomical alignment of placenta and fetal organs over the state-of-the-art rigid motion correction methods. In particular, unexpected temporal signal fluctuations during the first normoxia period were significantly decreased (P < 0.01) and volume overlap and distance between region boundaries measures were significantly improved (P < 0.01). CONCLUSION The proposed approach to align MRI time series enables more accurate quantitative studies of placental function by improving spatiotemporal alignment across placenta and fetal organs. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:403-412.
منابع مشابه
Temporal Registration in In-Utero Volumetric MRI Time Series
We present a robust method to correct for motion and deformations in in-utero volumetric MRI time series. Spatio-temporal analysis of dynamic MRI requires robust alignment across time in the presence of substantial and unpredictable motion. We make a Markov assumption on the nature of deformations to take advantage of the temporal structure in the image data. Forward message passing in the corr...
متن کاملMagnetic resonance imaging of vascular oxygenation changes during hyperoxia and carbogen challenges in the human retina.
PURPOSE To demonstrate blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) of vascular oxygenation changes in normal, unanesthetized human retinas associated with oxygen and carbogen challenge. METHODS MRI was performed with a 3-T human scanner and a custom-made surface-coil detector on normal volunteers. BOLD MRI with inversion recovery was used to suppress the vitreous...
متن کاملAn fMRI study of human visual cortex in response to spatiotemporal properties of visual stimuli
ABSTRACT Background: The brain response to temporal frequencies (TF) has been already reported, but with no study reported for different TF with respect to various spatial frequencies (SF). Materials and Methods: fMRI was performed by 1.5T GE-system in 14 volunteers during checkerboard, with TFs of 4, 6, 8 and 10Hz in low and high SFs of 0.5 and 8cpd. Results: Average percentage BOLD signa...
متن کاملStructured Dictionaries for Ischemia Estimation in Cardiac BOLD MRI at Rest
Cardiac Phase-resolved Blood-Oxygen-Level-Dependent (CP-BOLD) MRI examines changes in myocardial oxygenation in response to ischemia without contrast and stress agents. Since signal intensity changes are subtle, quantitative approaches are necessary to examine variations in myocardial BOLD signals and identify ischemic myocardial territories. Here, using data from animal studies, we extract myo...
متن کاملInverse Mapping of BOLD fMRI: 4D Magnetic Susceptibility (χ) Tomography
Background: A brain magnetic state (in terms of magnetic susceptibility distribution χ) can be detected by T2*-weighted MRI (T2*MRI) undergoing a cascade of data transformations. The MRI transformations cause distortions (or spatial morphing), which may be undone by solving the inverse imaging or mapping problem. Upon having a dataset acquired from Blood Oxygenation Level-Dependent (BOLD) funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance imaging : JMRI
دوره 46 2 شماره
صفحات -
تاریخ انتشار 2017